魔方乱了怎么还原6面 魔方怎么还原六面

很多小朋友都很喜欢玩魔方 也通过各种方式都学会了魔方,都是根据现有的公式和方法来学习,王老师一直建议小朋友不仅仅学会魔方,还要知道背后的原理和思路,正所谓 知其然,也要知其所以然,今天我们来看看魔方六面还原中蕴含的那些数学原理

一 魔方结构

魔方的构成 三阶魔方是由 3×3×3-1=26 个小方块组成的立方体,有 6 个面(还原之后每个面颜色相同,共 6 种颜色),每个面有 9 个 小面,共 54 个小面。26 个小方块包括 6 个中心块(仅一个可见 面)、12 个棱块(两个可见面)、 8 个角块(三个可见面)

.魔方的还原 魔方每个面都可以绕轴任意转动,随便转动几个面,魔方 就会成为颜色斑驳的状态。将这样的状态改变成为每个面上的 所有小面颜色都相同称为魔方的还原。还原过程实际就是根据 每一面中心块的颜色,对棱块和角块进行“对色”与“对位”。

二 魔方中的数学

一 魔方中的排列组合

由排列组合中的乘法和加法原理可知,三阶魔方共有 8!×38×12!×212 3×2×2 种状态。除去被轴固定的 6 个中心块外,剩 余 20 个小块, 8 个角块放在 8 个角位置,全排列为 8!,每个 角块的三种颜色因为方向的不同又有 3 种方法,因此共有 8!× 38 种排列;同理,12 个棱块共有 12!×212 种排列。

但是魔方还原 过程中,保持其他小块不动时,不可以单独改变一个角块的朝 向,不可以单独改变一个棱块的朝向,也不可以单独交换一对 棱块或一对角块的位置,因此需要除去 3×2×2。由此可见,要凭 运气把一个颜色斑驳的魔方还原成同面同色几乎是不可能的。

二 魔方的对称性

对称是一个几何图形 Φ 的如下性质:在某个变换群 G 的 作用下, Φ 被映射到自身上,这个群称为对称群。如果变换群 G 是一条直线,那么几何图形 Φ 就是关于直线 G 的对称图形;如 果变换群 G 是一个点,那么几何图形 Φ 就是以点 G 为中心的 对称图形。

若以点 G 为中心的对称图形 Φ 在平面内绕着 G 旋 转 360°/n(n 是一个整数)后与自身重合,那么 Φ 有一个 n 阶对 称,且 G 称为其对称中心。如图 a, b, c 分别是以 O 为中心的 2 阶、 4 阶、 3 阶对称。这样的对称性在正方体中完全展现,只是此 时绕平面内某点的旋转换成了空间中绕某直线的旋转。

三阶正方体魔方具有 2 阶、 3 阶、 4 阶对称轴,这样的对称 性是除了球体以外的其他物体所不能比拟的[1]。魔方的还原过 程就在于旋转中魔方色块位置的交换,对于魔方每层每次的旋 转都是绕着该层中心块的变换,这样的保持点间距离不变的空

三 魔方群

魔方的转动是指将魔方某个面上的所有块顺时针(面对该面)旋转 90°。相应的,若是逆时针旋转则称为逆转动。为了记录下转乱、复原的过程,习惯上采用由 David Singmaster 发明的符号来书写。以英文 Up(上)、Down(下)、Front (前)、Back(后)、Left(左)、Right(右)的第一个字母分别表示魔 方的上、下、前、后、左、右六个面的转动;用小写字母 u、 d、 f、 b、 l、 r 表示各面及相应的中心块;用 xy 来表示位于 x 面 y 位置的 棱块小面,如 uf 表示 u(上)面 f(前)位置的小面;用 xyz 表示位 于 x 面 yz 位置的角块小面,如 ufr 表示位于示 u(上)面 fr(前 右)位置的小面。

在对魔方任意一个面进行转动的时候,该面所在层的中心 块不会改变,其余 20 个小面的位置随之发生改变,这样的转动 可以用一系列小面的置换来表示:U=(ulb ubr urf ufl )(ub ur uf ul)(bul rub fur luf)(bu ru fu lu)(bru rfu flu lbu) D=(dbl dlf dfr drb)(db dl df dr)(bld lfd frd rbd)(bd ld fd rd)(bdr ldb fdl rdf) F=(flu fur frd fdl)(fu fr fd fl)(ufl rfu dfr lfd)(uf rf df lf )(urf rdf dlf luf) B=(bul bld bdr bru)(bu bl bd br)(ulb ldb drb rub)(ub lb db rb)(ubr lbu dbl rbd) L=(luf lfd ldb lbu)(lu lf ld lb)(ufl fdl dbl bul)(ul fl dl bl)(ulb flu dlf bld) R=(rfu rub rbd rdf)(ru rb rd rf)(urf bru drb frd)(ur br dr fr)(ubr bdr dfr fur)

设 G= U, D, F, B, L, R 是魔方所有转动生成的集合,可以 证明该集合以合成作为运算构成一个群,称为魔方群。它是上 述一系列小面的置换作为生成元的一个循环群。G 中的元素代表了所有置换的情形,魔方变换的所有状态 都能够找到与之相应的元素,魔方从还原状态经过一系列变化 再次还原,实现了一次循环,实际也是 G 中的元素经过周期性 的操作能够实现的,从中可以看到魔方还原与循环群的共性。

当初厄尔诺·鲁比克教授发明魔方,就是将其作为帮助学生增强空间思维能力的教学工具。

经过观察、分析,我们不仅可 以找到魔方中蕴涵的数学知识,也看到了魔方中的教学因素:

通过魔方的外观展示和结构剖析帮助学生建立立体模型的概 念,增强空间观念

通过魔方还原有助于学生深刻感受置换、循环,理解群论的相关概念

从外观一个简单的立体图形,到还原 过程中的各类变换 有助于学生逻辑思维能力的学习和提升

感谢您访问:美文云网站!本文永久链接:https://meiwenyun.com/415749.html。侵删或不良信息举报请联系邮箱:820608633@qq.com或微信:meiwenyun888。
上一篇 2024年8月9日 00:50
下一篇 2024年8月9日 00:50

相关推荐

  • 铜陵的美食有哪些 铜陵美食有哪些

    铜陵美食有铜陵大肠面、顺安酥糖、椒盐猪手、油炸毛豆腐、铜陵龙虾、铜陵茶干、钱桥牛头、铜陵粉蒸肉、铜陵墨子酥、江毛水饺等。铜陵大肠面:其为铜陵当地非常有名的一道特色小吃,制作简单,其…

    2024年8月12日
    70
  • 2023年冬至是哪一天_冬至的准确时间

    2023年冬至是哪一天_冬至的准确时间 在中华传统文化中,冬至是一个重要的节气,也是阳历年中白天最短、夜晚最长的日子,那么为了方便大家,下面给大家分享关于2023年冬至是哪一天,欢…

    2023年9月5日
    275
  • 脂肪肝有哪些饮食疗法?脂肪肝患者不妨尝试山楂肉片

    现在很多人的饮食都有问题,通过时间的积累,很容易导致,预防肝,也可以从饮食开始。 1、黄豆白菜 做法:黄豆60g,白菜干45g,煎服。 脂肪肝饮食疗法:大豆肥皂苷可与人体脂肪结合,…

    2023年4月30日
    170
  • cf狙击技巧教学(提高狙击水平的方法)

    在游戏中,大家会看到一些非常厉害的狙击大神,今天大厨哥就说说狙击入门技巧,分享一些老鸡贼的狙击技巧。当然了,最后一段才是我想说的真实技巧,其他内容大家就当扯猫比呢。 请输入图片描述…

    2024年8月21日
    84
  • 小学数学案例分析怎么写(数学归纳总结)

    一、 归一问题 【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】 总量÷份数=1份数量 1份数量×所占…

    2024年8月11日
    92
  • 孤注一掷的意思及成语故事

    孤注一掷的意思及成语故事   孤注一掷,汉语成语,把所有的钱一次押上去,决一输赢。比喻在危急时用尽所有力量做最后一次冒险。以下是小编精心整理的孤注一掷的意思及成语故事,仅供参考,欢…

    2023年8月20日
    181
分享本页
返回顶部